This is a seminar about concretification of higher categorical concepts. This quarter we will study Rotation Invariance in Algebraic K-Theory

Other relevant references:

  1. Higher Algebra (Lurie)
  2. Higher Topos (Lurie)
  3. Algebraic K-theory of Spaces (Waldhausen)
  4. A Universal Characterization of Algebraic K-Theory (Blumberg-Gepner-Tabuada)
  5. Triangulated Surfaces in Triangulated Categories (Dyckerhoff, Kapranov)
  6. Barwick’s Course Notes and Paper
  7. Fibrations in \infty-categories (Barwick-Shah) (For straightening-unstraightening)

Talk 1 (9/27): Introductory talk (Time: 11am, Place: Lunt 105)

Cabinet: Elden; Shadow: Dylan

Notes: (1)

Talk 2 (10/4): \infty-categories (Time: 11am, Place: Lunt 105)

Cabinet: PVK; Shadow: Kyle

Notes: Courtesy of Nilay

Notes: Paul’s Notes

Talk 3 (10/11): Stable \infty-categories (Time: 11am, Place: Lunt 105)

Cabinet: Piotr; Shadow: Yajit

Notes: Courtesy of Nilay

Talk 4 (10/18): Stable \infty-categories II/(co)Cartesian Fibrations (Time: 11am, Place: Lunt 105)


Talk 5 (10/25): Introduction to section 5/an E_2-coalgebra structure on \{\mathbb{C}P^n\}

Cabinet: Brian, Shadow: Aron

Talk 6 (11/1): A primer to \infty-operads

Cabinet: Sean, Shadow: Elden

Notes: Sean

Talk 7 (11/8): A primer to \infty-operads II

Cabinet: Sean, Shadow: Elden

Talk 8 (11/15): Graded/Filtered \infty-categories, categorical circle action