Current Projects

Broadly speaking, I like to implement homotopy theoretic thinking to geometry/algebraic geometry.

Factorization Algebras and Motivic Homotopy Theory

I am working on incorporating ideas and, more concretely, filtrations from the theory of chiral/factorization algebras to study \mathbb{A}^1 homotopy types (e.g. of certain mapping spaces)…

1.1 Factorization Algebras in Unstable Motivic Homotopy Theory I: Contractibility of Ran Spaces (draft – comments welcome!)

Proves contractibility of a version of the Ran space in unstable motivic homotopy, with a view towards nonabelian Poincare duality.

1.2 Factorization Algebras in Unstable Motivic Homotopy Theory II: Nonabelian Poincare Duality. (in preparation)

Slides for Indiana GSTGC

2. Motivic Homotopy Theory

I also like to think about motivic homotopy theory from the point of view algebraic geometry and K-theory…

2.1 A Primer to Unstable Motivic Homotopy Theory. (with Benjamin Antieau)

To appear in “Surveys on Recent Developments in Algebraic Geometry (Edited with Izzet Coskun, and Tommaso de Fernex), in the Proceedings of Symposia in Pure Mathematics” [Arxiv:1605.00929].

2.2 Modules over MW-Motivic Cohomology. (with Håkon Andreas Kolderup) (preliminary version, comments welcome!)

Proves that modules over MW-motivic cohomology is the Déglisé-Fasel spectrum using Barr-Beck-Lurie [Arxiv:1708.05651].


2.3 Motivic Landewber Exact Theories and Étale Cohomology. (with Paul Arne Østvær) (60 pages – available upon request)

The localization of a Landweber exact theory at étale motivic cohomology is a universal way of imposing étale descent. This is a refinement and generalization of the work of Thomason in the 80’s and Quick’s thesis for algebraically closed field.

2.4 Motivic Infinite Loop Spaces. (with Marc Hoyois, Adeel Khan, Vladimir Sosnilo and Maria Yakerson).

The recognition principle for infinite loop spaces in motivic homotopy theory in terms of “Gysin transfers along finite syntomic morphisms.”

Marc’s talk at UIUC conference

2.5 Twisted Homotopy Ktheory and Twisted Cycle Class Maps. (in preparation)

Twists certain cycle class maps by an Azumaya algebra via motivic homotopy theory.


3. Étale Homotopy Theory

and I like the point of view that étale homotopy types are shapes of (higher) topoi.

3.1 Relative étale realization of motivic spaces. (with David Carchedi)

A motivic version of the theory of relative étale realization of Barnea-Schlank.

Older Project:

Computations of Heegard-Floer homology

Some nontrivial examples of the BOS twisted spectral sequence. New York J. Math. 22 (2016) 363–378. [Arxiv:1604.04260] [NYJM].(with Igor Kriz)